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Saturation of Electrostatic Potential: Exactly Solvable
2D Coulomb Models
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We test the concepts of renormalized charge and potential saturation, intro-
duced within the framework of highly asymmetric Coulomb mixtures, on
exactly solvable Coulomb models. The object of study is the average electro-
static potential induced by a unique “guest” charge immersed in a classical
electrolyte, the whole system being in thermal equilibrium at some inverse tem-
perature β. The guest charge is considered to be either an infinite hard wall
carrying a uniform surface charge or a charged colloidal particle. The systems
are treated as two-dimensional; the electrolyte is modelled by a symmetric two-
component plasma (TCP) of point-like ±e charges with logarithmic Coulomb
interactions. Two cases are solved exactly: the Debye–Hückel limit βe2 →0 and
the Thirring free-fermion point βe2 = 2. The results at the free-fermion point
can be summarized as follows: (i) The induced electrostatic potential exhibits
the asymptotic behavior, at large distances from the guest charge, whose form is
different from that obtained in the Debye–Hückel (linear Poisson–Boltzmann)
theory. This means that the concept of renormalized charge, developed within
the nonlinear Poisson–Boltzmann (PB) theory to describe the screening effect
of the electrolyte cloud, fails at the free-fermion point. (ii) In the limit of an
infinite bare charge, the induced electrostatic potential saturates at a finite value
in every point of the electrolyte region. This fact confirms the previously pro-
posed hypothesis of potential saturation.

KEY WORDS: Coulomb systems; colloids; charge renormalization; electrostatic
potential saturation; solvable models.

1. INTRODUCTION

Asymmetric classical Coulomb mixtures, such as highly charged colloi-
dal or polyelectrolyte suspensions, in the strong coupling regime, have
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attracted much attention in the last years (for a review of phenome-
nological approaches built on the base of mean-field theories, see ref.
1). The concept of renormalized charge has been introduced within the
Wigner–Seitz cell models to describe an effective interaction between
highly-charged “macro-ions” as a result of their strong positional correla-
tions with the oppositely charged “micro-ions”.(2–6)

The concept of renormalized charge can be documented in the infinite
dilution limit of colloids.(7–11) The simplified model consists of a unique
colloidal particle idealized as a hard sphere of radius a carrying charge
Ze, Z is the valence and e the elementary charge, at its centre (any spheri-
cally symmetric charge distribution inside the colloid can be represented in
this way). The colloid is immersed in an electrolyte modeled by a symmet-
ric two-component plasma (TCP) of elementary ±e (if possible, point-like)
charges. The system is defined in an infinite ν-dimensional space of points
r∈Rν , having for simplicity vacuum dielectric constant ε=1. The interac-
tion energy of two particles of charges q and q ′ at the respective spatial
positions r and r′ is given by qq ′φ(|r − r′|), where φ, the Coulomb poten-
tial induced by a unit charge, is the solution of the Poisson equation

�φ(r)=−sνδ(r), (1.1)

sν is the surface area of the ν-dimensional unit sphere. This definition of
the ν-dimensional Coulomb potential maintains many generic properties
(e.g., screening sum rules ref. 12) of “real” three-dimensional (3D) Cou-
lomb systems with the interaction potential φ(r)= 1/r, r ∈R3. In particu-
lar, in 2D,

φ(r)=−ln(|r|/r0), r ∈R2, (1.2)

where r0 is a free-length scale. Thermal equilibrium is treated in the grand
canonical ensemble characterized by the inverse temperature β = 1/(kT )
and by the couple of bulk particle fugacities for electrolyte ±e-charged
particles, z+ = z− = z. The corresponding average bulk densities will be
denoted by n+ = n− = n/2, n is the total number density. For the classi-
cal case of point-like particles, the singularity of the Coulomb potential
φ(r) at the origin r=0 often prevents the thermodynamic stability against
the collapse of positive–negative pairs of charges: in 2D, for small enough
temperatures; in 3D, for any finite temperature.

We shall explain the concept of renormalized charge on the 3D mean-
field theories, valid in the high-temperature limit and free from the col-
lapse problem of point-like charges. Let us fix the colloidal particle at the
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origin 0 and denote by ψ(r) the induced average electrostatic potential at
point r. Inside the colloidal hard-core region 0< r � a, ψ(r) satisfies the
Poisson equation

�ψ<(r)=−4πZeδ(r). (1.3)

Inside the electrolyte region r >a, the Poisson equation takes the form

�ψ>(r)=−4πρ(r), (1.4)

where

ρ(r)= e [n+(r)−n−(r)] (1.5)

is the charge density of electrolyte particles. Within the ordinary mean-
field approach, the average particle densities at a given point are approxi-
mated by replacing the potential of mean force by the average electrostatic
potential at that point, n±(r)= n± exp[∓βeψ>(r)]. Eq. (1.4) then reduces
to the non-linear Poisson–Boltzmann (PB) equation

�ψ>(r)=4πen sinh [βeψ>(r)] . (1.6)

Debye and Hückel proposed a linearization of this equation by consider-
ing the small-argument expansion of sinh(βeψ>)∼βeψ> valid in the high-
temperature limit. The linear PB equation then reads

(
�−κ2

)
ψ>(r)=0, (1.7)

where κ=
√

4πβe2n is the 3D inverse Debye length of the electrolyte par-
ticles. Due to the spherical symmetry of the problem, �= ∂2

r + (2/r)∂r .
Eqs. (1.3) and (1.7), subject to the condition of regularity at r→ ∞ and
the boundary conditions of continuity of the electrostatic potential and
the electric field across the colloid surface r = a, imply that, in the linear
Debye–Hückel theory,

ψ<(r) = Ze

(
1
r

− κ

1+κa
)
, (1.8)

ψ>(r) = Ze

1+κa
exp [−κ(r−a)]

r
. (1.9)
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The charge density of electrolyte particles is given by

ρ(r)=−βe2nψ>(r), r >a. (1.10)

Strictly speaking, the linearization of Eq. (1.6) is only valid if βeψ(r)�1,
and this is indeed true for asymptotically large distances r where the
screened potential ψ(r) vanishes. As a consequence, at large r, the solu-
tion of the non-linear PB equation (1.6) must also take the Yukawa form

ψ>(r)∼Aexp [−κ(r−a)]
r

, r→∞ (1.11)

with A being an r-independent constant. The non-linearity of the prob-
lem is reflected only through an effective boundary condition at the col-
loid surface determining the constant A. Comparing (1.11) with (1.9) one
sees that A is related to the renormalized colloid valence, Zren, as follows

A= Zrene

1+κa . (1.12)

The renormalized charge reflects the screening effect of the electrolyte
cloud, and can further be used to establish an effective interaction for
a system of guest charges immersed in the electrolyte. Since the exact
solution of the non-linear PB equation (1.6) for the sphere geometry is
not available, the constant A can be determined only approximately, i.e.,
in the limiting case κa� 1, by matching with the exact solution of the
non-linear PB for the charged-plane geometry.(9,10) An important feature
is that, as expected from the Manning condensation theory,(2) the renor-
malized valence saturates at some finite value Zsat

ren when the colloidal bare
valence Z goes to infinity.

More refined approaches, which go beyond the mean-field approx-
imation and incorporate electrostatic correlations among the electrolyte
particles, were developed in refs. 13 and 14. Monte-Carlo simulations(13)

indicate the existence of a maximum in the plot of the renormalized
charge versus the bare colloidal charge.

As was correctly mentioned by Téllez and Trizac,(15) the definition
of renormalized charge requires that the average electrostatic potential
behaves far from the colloid as it would within the linearized Debye–Hückel
theory, up to the constant prefactor. This is not at all ensured for a
finite temperature. To avoid this artificial limitation in the saturation prob-
lem, one considers the possibility of a more general phenomenon of
potential saturation: the question is whether, in the limit of the infinite
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bare colloidal charge Ze→∞, the induced average electrostatic potential
ψ sat(r) is finite inside the whole electrolyte region r >a.2 We would like to
emphasize that the potential saturation, if it exists, is a pure non-linear-
ity effect: there is no potential saturation within the linear Debye–Hückel
theory, (see Eq. (1.9)).

It is well known that the linearized Debye–Hückel theory correctly
describes the small-coupling (high-temperature) limit βe2 →0 in the sense
that the basic screening properties of the charged system in the conduct-
ing regime are preserved. For an infinite homogeneous system, the zeroth
and second moments of the truncated charge–charge correlation function
are fixed by the Stillinger–Lovett sum rules.(12) In the present case one can
readily verify by using Eqs. (1.9) and (1.10) that the screening cloud of
the electrolyte particles compensates exactly the bare charge of the “guest”
colloid:

Ze+
∫ ∞

a

dr 4πr2ρ(r)=0. (1.13)

This counterpart of the bulk zeroth-moment (electroneutrality) sum rule
can be derived directly from the Poisson Eq. (1.4) by applying the Gauss’
law and then considering the boundary conditions for the electric field
−drψ |r=a = Ze/a2 and −drψ |r→∞ = 0. The electroneutrality sum rule
(1.13) thus holds within the non-linear PB theory, too.

The present work aims to put the concept of charge renormaliza-
tion and the hypothesis of the electric potential saturation on a rigorous
basis. As a test model for the electrolyte, we use the 2D symmetric TCP
of point-like ±e charges with logarithmic pairwise interactions (1.2). The
2D plasma of point-like charges is stable against the collapse of positive–
negative pairs of charges provided that the corresponding Boltzmann fac-
tor r−βe2

is integrable at short distances in 2D, i.e. for the (dimensionless)
coupling constant βe2<2. In this stability range of couplings, the equilib-
rium statistical mechanics of the plasma (the bulk thermodynamics, special
cases of the surface thermodynamics and the large-distance behavior of the
two-body correlation function) is exactly solvable via an equivalence with
the integrable 2D Euclidean sine-Gordon field theory (for a short review,
see ref. 16). The complete exact information about correlation functions is
available in two special cases: in the high-temperature Debye–Hückel limit
βe2 → 0, and just at the collapse point βe2 = 2,(17,18) which corresponds
to the free-fermion point of an equivalent 2D Thirring model (although
the free energy and the particle density diverge at the collapse point, the

2Based on simple electrostatics, the potential is infinite at the colloid surface r=a.
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truncated Ursell correlation functions are finite). We examine the above-
outlined problems in these two exactly solvable cases, for two particular
geometries: the charged line and the charged circular colloid. Based on the
exact results we show that the concept of renormalized charge does not
apply to the studied 2D microscopic Coulomb system. On the other hand,
the anticipated phenomenon of electric potential saturation is confirmed.

The paper is organized as follows. Section 2 deals with the charged-line
geometry. Section 2.1 is devoted to a short recapitulation of the Debye-
Hückel limit. In Section 2.2, the known exact results at the free-fermion
point(18) are analyzed from the point of view of the studied subjects. Sec-
tion 3 deals with the colloidal-charge geometry. As before, Section 3.1 con-
cerns the Debye–Hückel limit, while Section 3.2 is devoted to an original
derivation of the exact solution at the free-fermion point. A recapitulation
and some concluding remarks are given in Section 4.

2. CHARGED LINE

We consider an infinite 2D space of points r ∈R2 defined by Carte-
sian coordinates (x, y). The half-space x < 0, impenetrable to particles,
is assumed to be a vacuum hard wall. The electrolyte of ±e point-like
charges is confined to the complementary half-space x > 0. The model
interface is the line localized at x = 0, along the y-axis. The line, which
carries a uniform charge σe per unit length, models an electrode. There
is another electrode of opposite charge density localized at x=+∞. The
electrostatic potential induced by the two electrodes is 0 for x < 0 and
−2πσex for x >0. The boundary condition for the electric field reads

−dψ(x)
dx

∣∣∣∣
x=0

=2πσe. (2.1)

2.1. Debye–Hückel Limit

The average electrostatic potential at distance x form the interface sat-
isfies the 2D Poisson equation

d2ψ(x)

dx2
=−2πρ(x), x�0. (2.2)

In the spirit of the Debye–Hückel theory valid in the limit βe2 → 0, the
charge density of the electrolyte particles is approximated, in close analogy
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with Eq. (1.10), as ρ(x)∼−βe2nψ(x). The linear PB equation thus reads

(
d2

dx2
−κ2

)
ψ(x)=0, x�0, (2.3)

where κ=
√

2πβe2n is the 2D inverse Debye length. The solution of (2.3),
subject to the requirement of regularity at x→∞ and the boundary con-
dition (2.1), takes the form

ψ(x)= 2πσe
κ

exp(−κx), x�0. (2.4)

The consequent charge density

ρ(x)=−σeκ exp(−κx), x�0, (2.5)

fulfills the following analogue of the screening sum rule (1.13):

σe+
∫ ∞

0
dx ρ(x)=0. (2.6)

2.2. The Free-fermion Point

Since the particle density diverges at the collapse point βe2 = 2, the
available thermodynamic parameter is the fugacity z. It will be considered
in a rescaled form, m= 2πr0z [r0 is the length scale considered in (1.2)],
having dimension of an inverse length. The density profiles of electrolyte
particles near the charged plain hard wall were obtained in ref. 18 by solv-
ing the Green-function problem of the corresponding boundary Thirring
model at its free-fermion point. The result is

n±(x) = n± + m2

4π
[K2(2mx)−K0(2mx)]

−m
2

2π

[
1

2mx
+ 1
(2mx)2

]
exp(−2mx)

+m
2

2π

∫ ∓2πσ

0

dt√
m2 + t2 − t

exp
(
−2
√
m2 + t2x

)
, (2.7)



466 Šamaj

where Kl are the modified Bessel functions of order l. The divergent bulk
particle densities n+ = n− = n/2 can be regularized, for example, by con-
sidering a small hard core around each particle;(18) since we are interested
in the charge density ρ(x) defined by the difference e[n+(x)− n−(x)], we
avoid this regularization procedure. After some simple algebra, one gets

ρ(x)=− e

π

∫ 2πσ

0
dt
√
m2 + t2 exp

(
−2
√
m2 + t2x

)
. (2.8)

It is easy to check that the screening sum rule (2.6) is fulfilled by this
charge density.

The corresponding electrostatic potential, determined by the Poisson
equation (2.2) and the requirement of regularity at x→∞, reads

ψ(x)= e

2

∫ 2πσ

0

dt√
m2 + t2

exp
(
−2
√
m2 + t2x

)
. (2.9)

The boundary condition (2.1) is evidently satisfied for this potential. In
order to obtain the large-x expansion of ψ(x), we first make in (2.9) a
change of the integration variable t into u= x[

√
1+ (t/m)2 − 1], and then

expand the integrated function in powers of 1/x. In the leading order

ψ(x)∼ e

4

( π
mx

)1/2
exp(−2mx), x→∞ (2.10)

for all σ 	=0 [σ =0 implies the trivial result ψ(x)≡0]. The independence of
the leading asymptotic term (2.10) on the (non-zero) charge density σ is a
special feature of the present geometry. Comparing (2.10) to the Debye–
Hückel result (2.4) characterized by the pure exponential decay in x, and
identifying the respective inverse lengths 2m and κ, one sees that the large-
x behaviors differ one from the other. The idea of renormalized charge
density thus fails. On the other side, increasing in Eq. (2.9) the dimension-
less ratio σ/m→∞, the induced electric potential saturates monotonically
at the x-dependent value

ψ sat(x)= e

2
K0(2mx). (2.11)

It follows from the basic properties of K0 that 0�ψ sat(x)<∞ for all x >
0, in full agreement with the saturation hypothesis.(15)
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3. CHARGED CIRCULAR COLLOID

As in the 3D case discussed in Section 1, we fix at the origin one col-
loid of charge Ze and disk hard core with radius a. There is an infinite
2D TCP of ±e point-like charges in the complementary outer space. The
analog of the boundary condition (2.1) for the electric field now reads

−∂ψ(r)
∂r

∣∣∣∣
r=a

= Ze

a
. (3.1)

3.1. Debye–Hückel Limit

Inside the colloidal hard-core region 0<r�a, the electrostatic poten-
tial ψ(r) satisfies the 2D Poisson equation

�ψ<(r)=−2πZeδ(r). (3.2)

Inside the electrolyte region r > a, the consideration of the linear mean-
field prescription ρ(r)∼−βe2nψ(r) in the Poisson equation implies

(
�−κ2

)
ψ>(r)=0. (3.3)

Due to the circular symmetry of the problem, �=∂2
r + (1/r)∂r . Eqs. (3.2)

and (3.3), subject to the requirement of regularity at r → ∞ and the
usual boundary conditions of continuity across the colloid boundary r=a,
imply

ψ<(r) = Ze

[
−ln

( r
a

)
+ K0(κa)

κaK1(κa)

]
, (3.4)

ψ>(r) = Ze

κaK1(κa)
K0(κr). (3.5)

The boundary condition (3.1) is trivially satisfied. Note that, after defining
the surface charge density σe=Ze/(2πa) and going to the limits a, r→∞
with a fixed difference r−a=x>0, (3.5) reduces to the straight-line result
(2.4) as it should be. At large r, using the asymptotic formula for K0,(19)

the average electrostatic potential (3.5) behaves like

ψ>(r)∼ Ze

κaK1(κa)

( π

2κr

)1/2
exp(−κr), r→∞. (3.6)
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The electrolyte charge density, given by

ρ(r)=− Zeκ

2πaK1(κa)
K0(κr), r >a, (3.7)

fulfills the screening sum rule

Ze+
∫ ∞

a

dr 2πrρ(r)=0. (3.8)

3.2. The Free-fermion Point

According to the general formalism established in ref. 17 and 18,
in order to obtain density profiles of electrolyte ±e particles at coupling
βe2 = 2, one has to solve the Green function problem of a 2 × 2 matrix
G(r, r′). Its matrix elements Gqq ′(r, r′) (q, q ′ = ± denote the charge sign)
are determined by a system of four coupled partial differential equations
(PDE), written in a 2×2 matrix notation as follows

[
σ 1∂x +σ 2∂y +m+(r)

1+σ 3

2
+m−(r)

1−σ 3

2

]
G(r, r′)=1δ(r − r′). (3.9)

Here, 1 and σ i (i=1,2,3) denote the 2×2 unit and Pauli matrices, respec-
tively, and

mq(r)=m(r) exp [−2qv(r)] , q=± (3.10)

is the position-dependent (rescaled) fugacity for some external electric
potential v(r) (in units of e); a non-electric potential which acts in the
same way on both kinds of particles, like an impenetrable hard wall or
core, is described by the region-dependence of m(r). Four Eqs. (3.9) split
into two independent sets of equations, the one for the pair (G++,G−+)
and the other for the pair (G−−,G+−). We shall present a detailed deri-
vation of the results for the pair (G++,G−+), given by

m+(r)G++(r, r′)+ (∂x − i∂y
)
G−+(r, r′) = δ(r − r′), (3.11)(

∂x + i∂y
)
G++(r, r′)+m−(r)G−+(r, r′) = 0. (3.12)

Based on a similar derivation procedure, we shall only present the final
results for the pair (G−−,G+−). As concerns the boundary conditions,
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since Eq. (3.9) is a first-order system, all matrix elements Gqq ′(r, r′) must
be continuous when crossing a boundary between two different regions.
The requirement of regularity is obvious. The one-particle densities are
given by

nq(r)=mq(r) lim
r′→r

Gqq(r, r′), q=±. (3.13)

In the bulk regime with m(r)=m for all points r ∈R2, one has(18)

Gqq(r, r′)= m

2π
K0(m|r − r′|), q=± (3.14)

so the one-particle densities diverge logarithmically as r′ →r in (3.13). This
divergence can be suppressed by introducing a short-distance cut-off R,

n± = lim
mR→0

m2

2π
K0(mR)∼ m2

π

[
ln
(

2
mR

)
−C

]
, (3.15)

where C is Euler’s constant.
In the case of the studied model, the colloidal particle at the origin

induces the electrostatic potential (in units of e) v(r)= −Z ln(r/r0). The
rescaled fugacity m(r)=0 inside the hard-core region 0<r�a and m(r)=
m in the electrolyte region r >a. Thus,

m±(r)=



0 for 0<r�a,

m(r/r0)
±2Z for r >a.

(3.16)

For our purpose it will be sufficient to consider the source point r′ in Eqs.
(3.11) and (3.12) to be localized only in the electrolyte region, so, without
writing it explicitly, in what follows we shall assume that r ′>a. As con-
cerns the point r, let us first assume its localization in the colloidal hard-
core region, i.e. r�a. Taking m±(r)=0 in Eqs. (3.11) and (3.12), one gets

(
∂x + i∂y

)
G++(r, r′) = 0, r�a, (3.17)(

∂x − i∂y
)
G−+(r, r′) = 0, r�a. (3.18)

This means that, as functions of r, G++ depends only on z= r exp(iϕ) and
G−+ depends only on z̄= r exp(−iϕ). The general solutions of Eqs. (3.17)
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and (3.18), regular at r=0, can be therefore written as the expansions of
the forms

G++(r, r′) = m

2π

∞∑
l=0

fl(mr
′, ϕ′)(mr)l exp(ilϕ), r�a, (3.19)

G−+(r, r′) = m

2π

∞∑
l=0

hl(mr
′, ϕ′)(mr)l exp(−ilϕ), r�a, (3.20)

where the functions {fl, hl} are determined by the boundary conditions at
r=a. When the point r is localized in the electrolyte region, i.e. r >a, tak-
ing m±(r)=m(r/r0)±2Z, we first express by using Eq. (3.12) G−+ in terms
of G++:

G−+(r, r′)=− 1
m

(
r

r0

)2Z (
∂x + i∂y

)
G++(r, r′), r >a. (3.21)

The consequent substitution of G−+ into (3.11) implies the only PDE
determining G++. After lengthy but simple algebra, in terms of the auxil-
iary two-point function

g++(r, r′)=− 1
m

(
r

r0

)Z
G++(r, r′)

(
r ′

r0

)Z
(3.22)

this PDE is obtained in the form

(
−m2 − Ĥ

)
g++(r, r′)= δ(r − r′), r >a, (3.23)

where

Ĥ =−�r − 2Zi
r2

(
x∂y −y∂x

)+ Z2

r2
. (3.24)

It is clear that g++(r, r′)= 〈r|(−m2 − Ĥ )−1|r′〉 is nothing but the Green-
function two-point matrix element associated with the one-particle quan-
tum Hamiltonian Ĥ and the spectral parameter −m2. In polar coordinates
(r, ϕ), the Hamiltonian (3.24) reads

Ĥ =− ∂2

∂r2
− 1
r

∂

∂r
− 1
r2

∂2

∂ϕ2
− 2Zi
r2

∂

∂ϕ
+ Z2

r2
. (3.25)
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According to elementary quantum mechanics, the periodicity requirement
under the shift ϕ→ ϕ + 2π implies that the eigenfunctions of Ĥ have a
trivial dependence on the angle ϕ: �l∝exp(ilϕ), where l=0,±1, . . . is the
“magnetic” quantum number. It follows from Eq. (3.25) that the radial
part of the eigenfunction with a given l is then determined by

Ĥl =− ∂2

∂r2
− 1
r

∂

∂r
+ (l+Z)2

r2
. (3.26)

This is the radial Hamiltonian of a free quantum particle in 2D, where
the presence of the colloidal charge Ze manifests itself as the shift of
the quantum number l by the integer Z. The standard Green-function
technique implies an explicit form of g++. Using then the relation (3.22),
G++(r, r′) with r, r ′>a is found to be

G++(r, r′) = m

2π

( r0
r

)Z ( r0
r ′
)Z ∞∑

l=−∞
exp

[
il(ϕ−ϕ′)

]

× [Il+Z(mr<)Kl+Z(mr>)+ clKl+Z(mr)Kl+Z(mr ′)].
(3.27)

Here, Il and Kl are the modified Bessel functions, and r< (r>) is the
smaller (the larger) of r and r ′. G−+ is generated from G++ via Eq. (3.21).
For the special case a<r <r ′, it takes the form

G−+(r, r′) = m

2π

(
r

r0

)Z ( r0
r ′
)Z ∞∑

l=−∞
exp

[
i(l+1)ϕ− ilϕ′]

× [−Il+Z+1(mr)+ clKl+Z+1(mr)]Kl+Z(mr ′). (3.28)

The unknown constants {cl} are determined by the requirements that G++
and G−+ be continuous at r = a. With regard to Eqs. (3.19) and (3.20),
one gets

cl =



−Il+Z(ma)/Kl+Z(ma) l <0,

Il+Z+1(ma)/Kl+Z+1(ma) l�0.
(3.29)

Applying the “summation theorem” for the modified Bessel functions(19)

K0(m|r − r′|)=
∞∑

l=−∞
exp[il(ϕ−ϕ′)]Il(mr<)Kl(mr>), (3.30)
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we conclude that, when both points r and r′ are in the electrolyte region
(r, r ′>a),

G++(r, r′) = m

2π

( r0
r

)Z ( r0
r ′
)Z {

exp
[−iZ(ϕ−ϕ′)

]
K0(m|r − r′|)

+
∑
l�0

exp[il(ϕ−ϕ′)]
Il+Z+1(ma)

Kl+Z+1(ma)
Kl+Z(mr)Kl+Z(mr ′)

−
∑
l<0

exp[il(ϕ−ϕ′)]
Il+Z(ma)
Kl+Z(ma)

Kl+Z(mr)Kl+Z(mr ′)
}
. (3.31)

The matrix element G−−(r, r′) can be deduced in the same way. It is
expressible by formula (3.31) under the substitution Z→ −Z, which cor-
responds to the sign reversal of the colloidal charge.

The densities of electrolyte particles at r >a follow from the relation
(3.13):

n±(r)=n± + m2

2π

∞∑
l=±Z

Il+1(ma)

Kl+1(ma)
[Kl(mr)]2 − m2

2π

±Z−1∑
l=−∞

Il(ma)

Kl(ma)
[Kl(mr)]2.

(3.32)

Using the Wronskian relation(19)

Il(x)Kl+1(x)+ Il+1(x)Kl(x)= 1
x
, (3.33)

together with the symmetry properties Il = I−l and Kl =K−l for integer l,
the charge density in the electrolyte region is found in the form

ρ(r)=− me

2πa

Z∑
l=1

1
Kl−1(ma)Kl(ma)

(
[Kl−1(mr)]

2 + [Kl(mr)]2
)
, r >a.

(3.34)

It stands to reason that ρ(r)= 0 in the colloidal region r � a due to the
hard-core repulsion. With the aid of the integral formula

∫ ∞

a

dr r[Kl(mr)]2 = a2

2

(
Kl−1(ma)Kl+1(ma)− [Kl(ma)]2

)
(3.35)
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and the recursion relation(19)

x[Kl−1(x)−Kl+1(x)]=−2lKl(x), (3.36)

taken at l=Z, the charge density (3.34) can be shown to fulfill the screen-
ing sum rule (3.8).

The average electrostatic potential is given by the couple of Poisson
equations

�ψ<(r) = −2πZeδ(r), r�a, (3.37)

�ψ>(r) = −2πρ(r), r >a. (3.38)

The circularly symmetric solution of Eq. (3.37) reads

ψ<(r)=Ze
[
−ln

( r
a

)
+ const

]
. (3.39)

The circularly symmetric potential of Eq. (3.38) fulfills the differential
equation

d

dr

[
r
dψ>(r)

dr

]
= me

a

Z∑
l=1

1
Kl−1(ma)Kl(ma)

r
(

[Kl−1(mr)]
2 + [Kl(mr)]2

)
.

(3.40)

The first integration of Eq. (3.40) with respect to r can be performed eas-
ily. Using the regularity condition limr→∞ r drψ>(r)= 0, the integration
formula of type (3.35) and finally the recursion relation (3.36), one arrives
at

dψ>(r)
dr

=− e
a

Z∑
l=1

Kl−1(mr)Kl(mr)

Kl−1(ma)Kl(ma)
. (3.41)

Note the obvious fulfillment of the boundary condition (3.1). The subse-
quent integration of Eq. (3.41) with respect to r is a bit more complicated
problem. The regularity condition limr→∞ψ>(r)= 0 has to be combined
with the integral formula [derivable by using the relation (3.52)]

m

∫ ∞

r

dr ′Kl−1(mr
′)Kl(mr ′)= (−1)l+1 1

2

l−1∑
j=0

(−1)jµj [Kj(mr)]2, l�1,

(3.42)



474 Šamaj

µj is the Neumann factor: µ0 =1 and µj =2 for j �1, to get

ψ>(r)=− e
2

Z−1∑
j=0

(−1)jµjfj (ma)[Kj(mr)]2, (3.43)

where

fj (ma)=
Z∑

l=j+1

(−1)l
1
ma

1
Kl−1(ma)Kl(ma)

. (3.44)

With regard to the Wronskian relation (3.33), fj can be simplified as
follows

fj (ma) =
Z∑

l=j+1

(−1)l
[
Il(ma)

Kl(ma)
+ Il−1(ma)

Kl−1(ma)

]

= (−1)Z
IZ(ma)

KZ(ma)
− (−1)j

Ij (ma)

Kj (ma)
. (3.45)

Thus, in the electrolyte region r >a,

ψ>(r) = e

2

Z−1∑
j=0

µj
Ij (ma)

Kj (ma)
[Kj(mr)]2

+ e
2
(−1)Z+1 IZ(ma)

KZ(ma)

Z−1∑
j=0

(−1)jµj [Kj(mr)]2. (3.46)

Before analyzing the result (3.46), let us recall some basic properties
of the modified Bessel functions Il(x) and Kl(x) (l = 0,1, . . . ) when the
argument x belongs to the interval 0 � x <∞. Il(x) and Kl(x) satisfy the
same differential equation,

d2f

dx2
+ 1
x

df

dx
−
(

1+ l2

x2

)
f =0, f = Il(x) or Kl(x) (3.47)

but exhibit different asymptotic behaviors:

Il(x)∼ 1√
2πx

ex, Kl(x)∼
( π

2x

)1/2
e−x for x→∞ (3.48)
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and

Il(x)∼ 1
l!

(x
2

)l
, Kl(x)∼ (l−1)!

2

(x
2

)−l
for x→0 (3.49)

except for the special l= 0 case of K0(x)∼−ln(x/2)−C. Both Il(x) and
Kl(x) are positive for x � 0. In particular: Il(x) starts from 0 at x = 0
[except for the special case of I0(0)= 1] and monotonously increases to
infinity at x→ ∞; Kl(x) is infinite at x = 0 and monotonously decreases
to zero at x→∞.

For finite Z, at large r, the average electrostatic potential (3.46)
behaves like

ψ>(r)∼ πe

4



Z−1∑
j=0

µj
Ij (ma)

Kj (ma)
+ IZ(ma)

KZ(ma)


 1
mr

exp(−2mr), r→∞.

(3.50)

This asymptotic behavior differs from the large-distance prediction (3.6) of
the Debye–Hückel theory by the factor r−1/2, which is in contradiction
with the concept of renormalized charge.

In order to resolve the saturation problem in the limit Z→ ∞, we
first use the integral formula (3.42) to rewrite the last term on the rhs of
Eq. (3.46) as follows

ψ>(r) = e

2

Z−1∑
j=0

µj
Ij (ma)

Kj (ma)
[Kj(mr)]2

+e IZ(ma)
KZ(ma)

m

∫ ∞

r

dr ′KZ−1(mr
′)KZ(mr ′). (3.51)

The positivity of the modified Bessel functions then ensures that, for every
Z, ψ>(r)� 0 in the whole region r > a. In order to establish an upper
bound for ψ>(r), we first use the relation(19)

Kl−1(x)+Kl+1(x)=−2
dKl(x)

dx
(3.52)

to establish the equality

m

∫ ∞

r

dr ′KZ−1(mr
′)KZ(mr ′)= [KZ(mr)]2 −m

∫ ∞

r

dr ′KZ(mr ′)KZ+1(mr
′).

(3.53)
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The consideration of this equality in Eq. (3.51) leads to

ψ>(r)�
e

2

Z∑
j=−Z

Ij (ma)

Kj (ma)
[Kj(mr)]2, r >a (3.54)

In the considered region r >a, the inequality Kj(mr)/Kj (ma)< 1 implies
that

ψ>(r)<
e

2

Z∑
j=−Z

Ij (ma)Kj (mr), r >a. (3.55)

In the limit Z→∞, the application of the summation theorem (3.30) with
ϕ=ϕ′ finally gives

0�ψ sat(r)<
e

2
K0 (m(r−a)) , r >a. (3.56)

The existence of the lower and upper bounds for ψ sat in the electrolyte
region confirms once again the validity of the potential saturation hypoth-
esis.(15)

4. CONCLUSION

We have studied the average electrostatic potential induced by a
unique “guest” charge immersed in an infinite electrolyte, the electrolyte
being modelled by the classical TCP of elementary ±e point-like charges.
The primary motivation came from the predictions of the two basic 3D
mean-field theories described in the Introduction: the Debye–Hückel the-
ory based on the linear PB equation and the non-linear PB theory. The
important point is that both mean-field theories predict the same type
behavior of the induced electrostatic potential at asymptotically large dis-
tances from the guest charge, only the constant prefactors are different.
Within the non-linear PB theory, this fact permits one to introduce the
renormalized guest charge which involves the non-linear screening effect
of the electrolyte cloud, and can further be used to establish an effective
interaction for a system of guest charges immersed in the electrolyte. When
the bare guest charge goes to infinity, the renormalized charge saturates at
a finite value.

In order to go beyond the mean-field methods, we have have tested
the concept of charge renormalization on the 2D Coulomb models. These
system have advantage of being completely solvable not only in the
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Debye–Hückel high-temperature limit βe2 → 0, but also at a finite tem-
perature, namely the Thirring free-fermion point βe2 = 2. Although just
at this point the collapse of positive–negative pairs of point-like charges
emerges, the charge-density profile in the electrolyte region (determining
the average electrostatic potential through the Poisson equation) is a well-
defined finite quantity which satisfies the electroneutrality sum rule. We
have considered two geometries of the guest charge: the infinite hard wall
carrying the uniform surface charge (Section 2) and the charged colloi-
dal particle with a hard core (Section 3). For both geometries, the results
at the free-fermion point can be summarized as follows. The asymptotic
large-distance behavior of the induced electrostatic potential differs from
that predicted by the linear Debye–Hückel theory, so the concept of ren-
ormalized charge does not apply. On the other hand, when the bare guest
charge increases to infinity, the induced potential saturates monotonically
at a finite value in each point of the electrolyte region. In the case of
the infinite charged wall, the saturation potential was found explicitly, see
Eq. (2.11). In the more complicated case of the charged colloidal particle,
lower and upper bounds for the saturated potential were derived, see for-
mula (3.56). These results confirm that the potential saturation hypothe-
sis(15) is indeed true.

It is an open question whether the failure of the concept of renor-
malized charge is restricted to the free-fermion point or it is a more gen-
eral phenomenon. The answer to this question probably lies in the particle
spectrum of the integrable (1+1)-dimensional sine-Gordon model which is
the field-theory equivalent of the 2D TCP. The particle spectrum consists
of one soliton–antisoliton pair (S, S̄) and of S− S̄ bound states (“breath-
ers”) {Bj }.(20) According to the form-factor method,(21) the large-distance
behavior of two-point correlation functions is determined by such particle
from the sine-Gordon spectrum which has the lightest mass. In the whole
stability region 0�βe2<2, the role of the dominant particle is played by
the lightest B1-breather. The B1-breather disappears from the particle spec-
trum (as the last from the breathers) just at the collapse point βe2 = 2
where the soliton-antisoliton pair takes the dominant role. The soliton-
antisoliton pair exists up to the Kosterlitz–Thouless transition point βe2 =
4 at which the sine-Gordon model ceases to be a massive field theory.
From this point of view, the qualitative characteristics of the large-distance
behavior of the induced electric potential obtained at the free-fermion
point βe2 = 2 are supposed to be common for the whole strong-coupling
interval 2�βe2<4. It is likely that the weak-coupling interval 0�βe2<2,
“governed” by the lightest B1-breather, exhibits the common large-distance
characteristics of the Debye–Hückel type, and so the concept of renor-
malized charge might be applicable there. The rigorous treatment of the
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whole weak-coupling interval 0�βe2<2 of the electrolyte via the equiva-
lent sine-Gordon model will be reported soon.
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